翻訳と辞書
Words near each other
・ Johnson Bademosi
・ Johnson Bamidele Olawumi
・ Johnson banks
・ Johnson bar
・ Johnson bar (disambiguation)
・ Johnson Bar (locomotive)
・ Johnson bar (vehicle)
・ Johnson Barn
・ Johnson Barn (Fayetteville, Arkansas)
・ Johnson baronets
・ Johnson Bay
・ Johnson Bayou, Louisiana
・ Johnson Beharry
・ Johnson Bluff
・ Johnson Boat Works
Johnson bound
・ Johnson Box
・ Johnson Braund Design Group
・ Johnson Broadcasting
・ Johnson Bros Tours
・ Johnson Brothers
・ Johnson Brothers (musical group)
・ Johnson Building
・ Johnson Bwalya
・ Johnson C. Smith
・ Johnson C. Smith University
・ Johnson Camden McKinley House
・ Johnson Cann
・ Johnson Center for Child Health and Development
・ Johnson Central High School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Johnson bound : ウィキペディア英語版
Johnson bound
The Johnson bound is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.
== Definition ==
Let C be a q-ary code of length n, i.e. a subset of \mathbb_q^n. Let d be the minimum distance of C, i.e.
:d = \min_ d(x,y) ,
where d(x,y) is the Hamming distance between x and y.
Let C_q(n,d) be the set of all q-ary codes with length n and minimum distance d and let C_q(n,d,w) denote the set of codes in C_q(n,d) such that every element has exactly w nonzero entries.
Denote by |C| the number of elements in C. Then, we define A_q(n,d) to be the largest size of a code with length n and minimum distance d:
: A_q(n,d) = \max_ |C|.
Similarly, we define A_q(n,d,w) to be the largest size of a code in C_q(n,d,w):
: A_q(n,d,w) = \max_ |C|.
Theorem 1 (Johnson bound for A_q(n,d)):
If d=2t+1,
: A_q(n,d) \leq \frac (q-1)^i + \frac (q-1)^ - A_q(n,d,d)} }.
If d=2t,
: A_q(n,d) \leq \frac (q-1)^i + \frac (q-1)^ } }.
Theorem 2 (Johnson bound for A_q(n,d,w)):
(i) If d > 2w,
: A_q(n,d,w) = 1.
(ii) If d \leq 2w, then define the variable e as follows. If d is even, then define e through the relation d=2e; if d is odd, define e through the relation d = 2e - 1. Let q^
* = q - 1. Then,
: A_q(n,d,w) \leq \lfloor \frac \lfloor \frac \lfloor \cdots \lfloor \frac \rfloor \cdots \rfloor \rfloor
where \lfloor ~~ \rfloor is the floor function.
Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on A_q(n,d).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Johnson bound」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.